一、区块链中什么是共识,区块链中的共识算法有哪些
什么是区块链共识
在比特币和其它区块链币中,也存在如何达成共识的问题。或者说,比特币或其它区块链币最核心的问题也是如何在去中心化的环境中达成共识。
区块链是比特币背后的核心技术,也是支撑比特币的基础架构。因此在谈区块链共识,就必然要谈比特币的共识。
比特币最核心的突破是在去中心化的情况下对交易事件达成了共识,即在没有中心组织的情况下对某个交易的有效性达成了一致。
比特币实现这个共识的方法主要包括两个部分:
激励;即通过每个区块产生一定量的新比特币来激励参与者;
引入外部资源确保安全;即通过大量的外部计算来确保共识的安全性,也就是工作量证明(ProofofPower);
这也是几乎所有PoW币种所采用的的方法。例如,DECENT、莱特币、沙钱币、狗狗币等等。
区块链技术中的共识机制是什么?1.共识机制是什么
在一个去中心化的结构体系中,由于各个参与方的地位是平等的,当出现分歧的时候,如何达成共识就成了问题。
所以,一个设计精妙、实际操作起来简单的共识机制是一个分布式的体系能够顺利自运转下去的关键所在。
简而言之,共识机制就是在一个时间段内对事物的前后顺序达成共识的一种算法,是区块链节点就区块信息达成全网一致共识的机制。
什么是区块链共识?
所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
区块链作为一种按时间顺序存储数据的数据结构,可支持不同的共识机制。共识机制是区块链技术的重要组件。区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质:
1)一致性。所有诚实节点保存的区块链的前缀部分完全相同。
2)有效性。由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。
什么是共识机制?共识机制,简单说就是在一个时间段内对事物的前后顺序达成共识的一种算法。
在区块链上,共识机制就像一个国家的法律,维系着区块链世界的正常运转。在区块链上,每个人都会有一份记录链上所有交易的账本,链上产生一笔新的交易时,每个人接收到这个信息的时间是不一样的,有些想要干坏事的人就有可能在这时发布一些错误的信息,这时就需要一个人把所有人接收到的信息进行验证,最后公布最正确的信息。
目前,常用的共识机制有三种:
1、工作量证明机制(ProofofWork-PoW)是我们最熟知的一种共识机制。就如字面的解释,PoW就是工作越多,收益越大。这里的工作就是猜数字,谁能最快的猜出这个唯一的数字,谁就能做信息公示人。
2、权益证明机制(ProofofStake-PoS)也属于一种共识证明,它类似股权凭证和投票系统,因此也叫“股权证明算法”。由持有最多(token)的人来公示最终信息。
3、拜占庭共识算法(PracticalByzantineFaultTolerance-PBFT)也是一种常见的共识证明。它与之前两种都不相同,PBFT以计算为基础,也没有代币奖励。由链上所有人参与投票,少于(N-1)/3个节点反对时就获得公示信息的权利。
二、共识算法都包括了什么算法
下面列出30种共识算法。
1.工作量证明(PoW,Proof of Work)
2.权益证明(PoS,Proof of Stake)
3.延迟工作量证明(dPoW,Delayed Proof-of-Work)
4.授权 PoS(DPoS,Delegated Proof-of-Stake)
5.权威证明(PoA,Proof-of-Authority)
6.权重证明(PoWeight,Proof-of-Weight)
7.声誉证明(PoR,Proof of Reputation)
8.所用时间证明(PoET,Proof of Elapsed Time)
9.容量证明(PoC,Proof of Capacity),也称为空间证明(PoSpace,Proof of Space)
10.历史证明(PoHistory,Proof of History)
11.权益流通证明(PoSV,Proof of Stake Velocity)
12.重要性证明(PoImportance,Proof of Importance)
13.烧毁证明(PoBurn,Proof of Burn)
14.身份证明(PoI,Proof of Identity)
15.活动证明(PoActivity,Proof Of Activity)
16.时间证明(PoTime,Proof of Time)
17.存在证明(PoExistence,Proof of Existence)
18. Ouroboros
19.可收回证明(PoR,Proof of Retrievability)
20.拜占庭容错(Byzantine Fault Tolerance)
21.授权拜占庭容错算法(dBFT,Delegated Byzantine Fault Tolerance)
22. RAFT
23.恒星共识(Stellar Consensus)
24.置信度证明(PoB,Proof of Believability)
25.有向无环图(DAG,Directed Acyclic Graphs)
26. Tangle(IOTA)
27. Hashgraph
28.Holochain
29. Block-Lattice(Nano)
30.SPECTRE
三、区块链共识方法是什么(区块链共识机制有哪些)
区块链常见的三大共识机制
区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。
可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。
所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。
区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。
不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。
目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)
接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景
概念:
工作量证明机制(Proofofwork),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。
工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。
应用:
POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的BlockHash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。
而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到BlockHash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。
如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。
假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。
优缺点
优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。
缺点:需要消耗大量的算法,达成共识的周期较长
概念:
权益证明机制(ProofofStake),要求证明人提供一定数量加密货币的所有权。
权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。
应用:
2012年,化名SunnyKing的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。
为了实现POS,SunnyKing借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。
上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。
优缺点:
优点:缩短达成共识所需的时间,比工作量证明更加节约能源。
缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证
概念:
授权股权证明机制(DelegatedProofofStake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。
授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。
同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
应用:
比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。
见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。
DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。
优缺点:
优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证
缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。
区块链有几种共识算法?RippleConsensus(瑞波共识算法)
使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。
5、PBFT:PracticalByzantineFaultTolerance(实用拜占庭容错算法)
PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,假设|R|=3f+1,这里f是有可能失效的副本的最大个数。尽管可以存在多于3f+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。
PBFT算法主要特点如下:客户端向主节点发送请求调用服务操作;主节点通过广播将请求发送给其他副本;所有副本都执行请求并将结果发回客户端;客户端需要等待f+1个不同副本节点发回相同的结果,作为整个操作的最终结果。
什么是区块链共识?
所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
区块链作为一种按时间顺序存储数据的数据结构,可支持不同的共识机制。共识机制是区块链技术的重要组件。区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质:
1)一致性。所有诚实节点保存的区块链的前缀部分完全相同。
2)有效性。由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。
区块链的四种共识机制区块链的共识机制可以分为以下四类:权益证明机制、工作量证明机制、Pool验证和池股份授权证明机制。
区块链,就是一个又一个区块组成的链条。每一个区块中保存了一定的信息,它们按照各自产生的时间顺序连接成链条。这个链条被保存在所有的服务器中,只要整个系统中有一台服务器可以工作,整条区块链就是安全的。这些服务器在区块链系统中被称为节点,它们为整个区块链系统提供存储空间和算力支持。
区块链---共识算法PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。
PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。
R=Hash(r)
哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:
Rd=Hash(r+n)
该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。
?
PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。
POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。
节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。
?
DPoS算法和PoS算法相似,也采用股份和权益质押。
但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。
选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。
这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。
通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。
?
拜占庭问题:
拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。
但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。
BFT:
BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。
拜占庭容错系统:
发生故障的节点被称为拜占庭节点,而正常的节点即为非拜占庭节点。
假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n≥3m+1),拜占庭容错系统需要满足如下两个条件:
另外,拜占庭容错系统需要达成如下两个指标:
PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题
?
PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点p=vmod|R|。v:视图编号,|R|节点个数,p:主节点编号。
PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。
具体流程如下:
客户端c向主节点p发送REQUEST,o,t,c请求。o:请求的具体操作,t:请求时客户端追加的时间戳,c:客户端标识。REQUEST:包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。
主节点收到客户端的请求,需要进行以下交验:
a.客户端请求消息签名是否正确。
非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条PRE-PREPARE,v,n,d,m消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。PRE-PREPARE,v,n,d进行主节点签名。n是要在某一个范围区间内的[h,H],具体原因参见垃圾回收章节。
副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:
a.主节点PRE-PREPARE消息签名是否正确。
b.当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。
c.d与m的摘要是否一致。
d.n是否在区间[h,H]内。
非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条PREPARE,v,n,d,i消息,v,n,d,m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。PREPARE,v,n,d,i进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于ViewChange过程中恢复未完成的请求操作。
主节点和副本节点收到PREPARE消息,需要进行以下交验:
a.副本节点PREPARE消息签名是否正确。
b.当前副本节点是否已经收到了同一视图v下的n。
c.n是否在区间[h,H]内。
d.d是否和当前已收到PRE-PPREPARE中的d相同
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条COMMIT,v,n,d,i消息,v,n,d,i与上述PREPARE消息内容相同。COMMIT,v,n,d,i进行副本节点i的签名。记录COMMIT消息到日志中,用于ViewChange过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。
主节点和副本节点收到COMMIT消息,需要进行以下交验:
a.副本节点COMMIT消息签名是否正确。
b.当前副本节点是否已经收到了同一视图v下的n。
c.d与m的摘要是否一致。
d.n是否在区间[h,H]内。
非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回REPLY,v,t,c,i,r给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。
?
如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。
如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起ViewChange协议。
ViewChange协议:
副本节点向其他节点广播VIEW-CHANGE,v+1,n,C,P,i消息。n是最新的stablecheckpoint的编号,C是2f+1验证过的CheckPoint消息集合,P是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。
当主节点p=v+1mod|R|收到2f个有效的VIEW-CHANGE消息后,向其他节点广播NEW-VIEW,v+1,V,O消息。V是有效的VIEW-CHANGE消息集合。O是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:
副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始O中的PRE-PREPARE消息处理流程。
?
在上述算法流程中,为了确保在ViewChange的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。
最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。
副本节点i发送CheckPoint,n,d,i给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stablecheckpoint。
这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。
为了防止i的处理请求过快,设置一个上文提到的高低水位区间[h,H]来解决这个问题。低水位h等于上一个stablecheckpoint的编号,高水位H=h+L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L=2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stablecheckpoint发生变化,再继续前进。
?
在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
?
?
Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。
?
下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。
在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证,这也称为法定人数。在Raft集群中执行操作所需的最少投票数为(N/2+1),其中N是组中成员总数,即投票至少超过一半,这也就是为什么集群节点通常为奇数的原因。因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。
如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。
?
数据存储:Tidb/TiKV
日志:阿里巴巴的DLedger
服务发现:Consuletcd
集群调度:HashiCorpNomad
?
只能容纳故障节点(CFT),不容纳作恶节点
顺序投票,只能串行apply,因此高并发场景下性能差
?
Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。
当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。因此,在给定的实例中,Raft集群的节点可以处于以下任何状态:追随者(Follower),候选人(Candidate)或领导者(Leader)。
系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;
如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;
一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。
Raft使用基于心跳的RPC机制来检测何时开始新的选举。在正常期间,Leader会定期向所有可用的Follower发送心跳消息(实际中可能把日志和心跳一起发过去)。因此,其他节点以Follower状态启动,只要它从当前Leader那里收到周期性的心跳,就一直保持在Follower状态。
当Follower达到其超时时间时,它将通过以下方式启动选举程序:
根据Candidate从集群中其他节点收到的响应,可以得出选举
本站所有软件信息均由用户上传发布,版权归原著所有。如有侵权/违规内容,敬请来信告知邮箱:764327034@qq.com,我们将及时撤销! 转载请注明出处:https://www.ssyg068.com/biquanzx/29253.html
发表回复
评论列表(0条)